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The term “pattern” is widely used in many domaigither colloquially or in
scientific and technical contexts. Regardless &f domain of discourse,
however, a pattern articulates fundamental, recgrsystem structure. As
such, it embodies essential design knowledge thatbe used in building
and maintaining systems. It provides a solutiora toroblem that balances
key forces in a given context. The best patteragyanerative, teaching how
to build the solution they propose, rather tham @xlaining it. Patterns are
important to the practice of academic numeracylsslatvisers for three
reasons. First, patterns ground abstract concapteritext to aid problem
solving, which is often cited as an important giaduwskill and is an integral
part of academic numeracy. Second, consideratiartofext brings with it
consideration of constraints or forces that areedriby that context; patterns
incorporate consideration of forces into problertvisg. Third, success in
learning mathematics invariably involves pattercognition. Successful
students recognise that while they may not haven seqiven problem
before, they know what kind of problem it is, amerefore know how to
solve it, or recognise the pattern of the solutibhis paper explores the
application of a patterns-based approach to tegcahcademic numeracy
skills. We provide an overview of patterns, patseim pedagogy, and issues
specific to the practice of numeracy education.aliyn we detail a key
pattern,Getting Startedfor use by academic numeracy advisers in teaching
students problem solving skills, an essential campb of academic numer-
acy. We argue that explicitly articulating undenlyipatterns such &etting
Startedhelps students recognize, grasp, and apply thatserps, as needed,
thus improving their learning.

Key Words: pattern, mathematics, numeracy, communicationpleno
solving.

1. Introduction to patterns

Although Academic Language and Learning (ALL) adwisare most commonly associated
with academic literacy, a number also work, eitdditionally or solely, as numeracy advisers.
Many advisers have no doubt witnessed the emergehcencordancing for use in English
language teaching over the last few decades. Thisaked “data-driven learning” (Johns &
King, 1991, p. iii) promotes a pattern-based, arttlictive approach to learning grammar rather
than the traditional deductive one based on gramalatules and definitions. While pattern-
based approaches such as concordancing are riglatigdh known among ALL advisers, the
use of patterns to facilitate learning of academimeracy has not been as clearly detailed for
their numeracy colleagues.
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The term “pattern” is widely used in many domaiesher colloquially, or in technical or in
academic contexts. For example, a pattern miglielfieed in an artistic context as a “regularly
repeated arrangement, especially a design made repeated lines, shapes or colours on a
surface” (Cambridge University Press, 2003). Indbetext of understanding the operation of a
business, a pattern might be “a particular way imctv something is done, organised or
happens” (Cambridge University Press, 2003), orrevlae physical artefact is being built, “a
model or original used as an archetype” (Pick€&®®@. In a software system, a pattern could be
a particular recurring structural relationship betw classes or object instances (Coad, 1992).
Patterns in architecture describe fundamental tstralccharacteristics of buildings and towns
(Alexander, Ishikawa, & Silverstein, 1977). In aypital system, a pattern is a configuration
that forms as a result of a transformation thaaksesymmetry (Stewart & Golubitsky, 1992).

While there are some common features across dom#iese is no definitive, universal
definition of the pattern concept, perhaps becgageerns do not lend themselves to prescript-
ive definitions; rather, it is consensus about ¢xestence of patterns in a range of existing
artefacts that validates them (Winn & Calder, 2002)wever, we still need to develop our
understanding of patterns at a theoretical as agelpractical level in order to identify and use
them well. After a detailed study of patterns asrasany domains, Winn (2006) notes that
regardless of the particular domain, a patternigessa solution to a problem that balances key
forces in a given context. A pattern articulatesdamental, recurring system structure and, as
such, embodies key design knowledge that can be insbuilding and maintaining systems.
The best patterns are generative, teaching howitd the solution they propose, rather than
just explaining it.

A pattern is perhaps most frequently described s@wion to a problem in a context (Coplien,
1996, p. 2; Gamma, Helm, Johnson, & Vlissides, 1993; Schmidt, Johnson, & Fayad, 1996).
Within a given domain, what may appear to be vefferent problems often turn out to be the
same basic problem occurring in different conte&tpattern identifies such a recurring prob-
lem and a solution, describing them in a particatartext to help developers understand how to
create an appropriate solution. Patterns thus mapid explicitly state general problem-solving
knowledge that is usually implicit and gained otityough experience (Buschmann, Meunier,
Rohnert, Sommerlad, & Stal, 1996):

When experts work on a particular problem, it isisural for them to tackle it

by inventing a new solution that is completely idist from existing ones.

They often recall a similar problem they have alsesolved, and reuse the

essence of its solution to solve the new probletmis kind of “expert

behavior”, the thinking in problem-solution pairs, common to many

different domains ..(p. 2)

Explicitly stating key design knowledge in a pattean bring that knowledge to the attention of
experts who would otherwise be unaware of it. Thradwledge can be used to solve what
appears to be a new problem with a tried-and-tahetisn, thus improving the design of new
artefacts. But a pattern is more than just a sigetidn for a solution (Coplien, 1996):

| could tell you how to make a dress by specifyihg route of a scissors
through a piece of cloth in terms of angles andytles of cut. Or, | could

give you a pattern. Reading the specification, yawld have no idea what
was being built or if you had built the right thimdhen you were finished.
The pattern foreshadows the product: it is the fotenaking the thing, but

it is also, in many respects, the thing itself.3p.

A pattern provides some sort of picture of the gemynor shape of the potential artefacts it

describes. In a domain like architecture, wherexateler (1977) pioneered the use of patterns
in architectural design, geometry has an obvioussiphl meaning and describes the shape of
buildings and other architectural artefacts. Wreeraathematics solution is described in terms
of a pattern, the pattern must provide insight diiga picture level as to how and why the

solution is effective, providing the person usirmg tpattern with more than a rote-learned
solution and with the key insight necessary to ustdading how to discern when the solution is
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appropriate and how to apply it in different congexn other words, a pattern is both process

and product; it articulates both the process requio generate an artefact, and the artefact that
will be generated. A pattern therefore does moaa jhst describe the characteristics of a good

solution. It also teaches how to create such swistiand for this reason is often described as
generativeandstructurat

The pattern is, in short, at the same time a thirlgch happens in the world,
and the rule which tells us how to create thatghand when we must create
it. It is both a process and a thing; both a dpsion of a thing which is alive
and a description of the process which will gereethat thing. (Alexander,
1979, p. 247)

Once we understand buildings in terms of theirgoat, we have a way of
looking at them which makes all buildings, all gaof a town similar ... We
have a way of understanding the generative prosestéch give rise to
these patterns. (Alexander, 1979, p. 11)

Alexander (1979, p. 84) notes, however, that alghopatterns “... seem like elementary build-

ing blocks, [they] keep varying and are differenery time they occur”. Patterns articulate

recurring structure, but that structure change®raatg to context. Alexander argues that the
invariant structure that a pattern articulatestbado with relationship, rather than being embod-
ied in what would traditionally be seen as an gntttis the structural relationships that remain

constant across a variety of contexts. For examghde each gothic cathedral has a nave and
aisles, the particulars of nave and aisle are dlifterent from one cathedral to another. Neither
nave nor aisle by itself forms a pattern. The patte the structure generated by the invariant
relationship between nave and aisle in gothic chiie: “within a gothic cathedral ... the nave

is flanked on both sides by parallel aisles” (Alestar, 1979, p. 90).

While a pattern does generate structure, it doag than that; a pattern generates a structure or
solution that balances key forces. Developing adgeaution requires understanding both the
forces that bring about the problem and how thameek interact. For example, some
researchers (Nunes, Schliemann, & Carraher, 1993147-154) argue that for mathematics
teaching to be effective, it must take into accdontes such as the maths anxiety felt by some
students. If such forces are ignored and dismiasedelevant, the mathematical teaching, even
if theoretically competent, may be of little usehese it is not provided in a way that takes into
account all the key factors affecting the learnanyironment. Developing a solution to a
problem therefore requires balancing possibly dctirilg forces in such a way that the solution
structures developed are stable enough to be ig#edthe fact that a pattern encompasses prob-
lem, solution and context enables it to articuthte centrality of forces to problem solving, and
to provide stable solutions to problems (Weiss, 300

The documentation of a pattern goes beyond documgeatproblem and its

solution. It also describes the forces or desigrstraints that give rise to the
proposed solution. These are the undocumentederetaly misunderstood
features of a design. Forces can be thought ofuakipg or pulling the

design towards different solutions. A good patteatances the forces. (p.
712)

In domains such as architecture and computer sgjemhich have been at the forefront of
patterns research, patterns are usually documewtaiding to one of several typical forms. In
this paper, we use an amalgam of existing formspli€o, 1996) including the following
sections:Name Problem Context Forces Solution Rationale Example Resulting Context
The Namesection is not explicitly labelled as such, butikey word or phrase that describes
the pattern.Problem describes the problem or difficulty the patterrdredses andContext
specifies when to apply the pattern, as well aghheys that, if changed, would invalidate the
pattern. AForcessection is important because patterns are notyless to be followed blindly,
but involve balancing forces or constraints thdingdethe key trade-offs in the development of a
solution to a problem. Th&olutionsection addresses the problem stated in the pnobéetion
and should be detailed enough to be useful butrgee@ough to address a broad context.
Rationalehighlights why the solution is necessary, &&mpledescribes the general concept
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that is the focus of the pattern in a specific eghtResulting Contextvraps up the pattern by
noting which forces have been resolved and whiah peblems may arise as a result of this
pattern.

The remainder of this paper provides first a theocsband then a more practical discussion of
the use of patterns to facilitate the learninguheracy skills. Section 2 outlines the application
of patterns to education and Section 3 discussagessspecific to patterns and numeracy.
Section 4 outlines and analyses a key pat@eiting Startedfor use by academic numeracy

advisers to facilitate the learning of problem sadvskills, an essential component of academic
numeracy. Section 5 wraps up the paper with coimigsand suggestions for future work.

2. Patterns in education

Kuhn (1962, pp. 10-22) describes a paradigm a®agtht pattern that defines the set of pract-
ices of a scientific community at a given pointime. He points out that science is not limited
to the observations, laws, and theories taughextbooks but that often implicit paradigms

underlie the way laws and theories have been dpegd|loand understanding of the underlying
paradigm is critical for the science student. FI¢34879) applies Kuhn’s insight to the teaching
of computer science, discussing the teaching ofptmen programming using programming

languages such as Pascal and FORTRAN:

If I ask another professor what he teaches innt@ductory programming
course, whether he answers proudly “Pascal” oiddifftly “FORTRAN,” |
know that he is teaching a grammar, a set of sdémanles, and some
finished algorithms, leaving the students to digcpwn their own, some
process of design.

[You should] identify the paradigms [patterns] yasge, as fully as you can,
then teach them explicitly. They will serve youndstnts when Fortran has
replaced Latin and Sanskrit as the archetypal teagliage. (pp. 458-459)

Floyd's point is that the same fundamental pattemmderlie programming tasks, regardless of
the particular programming language used. SimiJasmmon patterns underlie the ability to
communicate, regardless of the particular spokaguage used. Teaching is made much more
effective when those patterns are explicitly redsgth and taught alongside the syntax for a
particular language.

Devlin (1998) points out that in recent decadeghemaatics has come to be characterised as the
science of patterns. He highlights a number oftiestiand processes — from snowflakes to
wallpaper, from motion and change to the GoldericRatand describes how the mathematics
underlying those phenomena might be describedrinst®f patterns. Such characterisations of
mathematics as the science of patterns should eaulprising given Polya’s (1962; 1965)
seminal work on mathematics and problem solving, @iscussion of related patterns. Rather
than subscribing to a narrow definition of problesaiving as being able obtain the correct
answer to a particular problem or type of problgmapplying a standard, learned technique,
Polya argues that the skill of problem solvinglisunded in the ability to be a good guesser and
apply heuristic strategies to independently sohallenging problems. Problem solving is then
much more related to guessing, insight, and diggotlean it is to formalistic deductive tech-
niques. Based on this point of view, Polya concaligas mathematics as problem solving, and
argues that the teaching of mathematics ought ¢cosfon “teaching to think” (1965, p. 100)
rather than merely imparting information. He thuguas that an exploratory, discovery phase
ought to precede the teaching of formal conceptabkng students to experience active rather
than passive learning.

Polya (1962) links his approach to solving problersing heuristics to the concept of pattern:

Solving problems is a practical art, like swimmiig,skiing, or playing the
piano: you can learn it only by imitation and preet
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If you wish to derive the most profit from your eff, look out for such
features of the problem at hand as may be usehdmdling the problems to
come. A solution that you have obtained by your @ffort or one that you
have read or heard, but have followed with reatrigst and insight, may
become gattern for you, a model that you can imitate with advgetan
solving similar problems. (p. v)

In the first part of his book, Polya (1962) aimsfamiliarise learners with useful patterns for
doing mathematics. He characterises various matth@eharoblems in terms of patterns, high-
lighting the importance of awareness and undergignaf the underlying pattern of a solution
to the ability to recognise and solve other prolddhat can be characterised in terms of the
same underlying pattern. In describing each patteatya first begins with an example, then
generalises from that example to obtain a pattard,finally describes the pattern in the context
of several other examples.

Schoenfeld (1992) builds on Polya’s and others’kwinrhis writing on learning to think math-
ematically. He argues that teaching mathematicscediely requires incorporating both epist-
emology and ontology, because it is the culturainiework within which we live and work that
shapes the kind of approach we take to problenirgphAlmost all of western education sits
within an epistemological framework which defingsowledge as “the sum total of what we
know” (Schoenfeld, 1992, p. 25). The focus of matagcs education has thus been primarily
on content, facts, and procedures; mathematics ledig is understood as content-based rather
than being a capacity to think independently. Sofedd (1992) points out, however, that over
the past two decades there has been a signifitemge in the way which mathematics is
conceptualised:

... Traditionally one defines what students oughtriow in terms of chunks
of subject matter, and characterizes what a stuklemivs in terms of the
amount of content that has been “mastered”. Asrakfand innocuous as
this view of “knowledge as substance” may seerhag serious entailments

Over the past two decades there has been a satifibange in the face of
mathematics ... and in the community’s understandinghat it is to know
and do mathematics ... The main thrust of this reeptalization is to
think of mathematics, broadly, as “the scienceaifgyns”. (pp. 25-28)

This change in conceptualisation represents aishiicus from content to process; from rules
and procedures to a way of thinking. It represangsowing understanding that mathematics is
more akin to other scientific disciplines in theedeto gather data and test theories using
heuristics. And it represents a growing understamdhat doing mathematics is a social and
collaborative act.

3. Patterns and numeracy

Kemp (2005, pp. 28-36) points out that the term erauy is defined and used in the literature
diversely, from referring to a collection of basiathematical skills through to a much richer
understanding of mathematics and its applicatioa variety of contexts. Given the increasing
emphasis on contextualising mathematics teachiogietier, we use the following definition
(AAMT, 1997) :

Numeracy involves using mathematics to achieve sq@ugose in a
particular context.

To be numerate is to use mathematics effectivelyneet the general
demands of life at home, in paid work, and for ipgr&tion in community

and civic life. In school education, numeracy fsi@damental component of
learning, performance discourse and critique acrabsareas of the
curriculum. It involves the disposition to use,dontext, a combination of:
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underpinning mathematical concepts and skills fracnoss the discipline
(numerical, spatial, graphical, statistical, andye@kaic); mathematical
thinking and strategies; general thinking skillgl angrounded appreciation
of context. (p. 15)

Steen (1998) notes that the importance of beingenat® is increasing in society as we
increasingly rely on computers and related dataniK€2005, p. 4) emphasises this point,
highlighting the wide variety of everyday activieequiring basic numeracy, including interp-
reting political polls, understanding the implicaits of giving medical consent, and under-
standing safety regulations. When it comes to agpiey numeracy for use in everyday life,

Kemp (2005, pp. 41-79) argues that the two maitofadhat contribute to numerate behaviour
are the way that students learn mathematics anddaeyply it to real world situations, and the

development and use of cognitive skills. We ardna the use of patterns is critical for devel-
oping numeracy because they facilitate the learofngathematics in appropriate ways and the
development of appropriate cognitive skills. Intmadar, we argue that patterns are important
to academic numeracy for three main reasons, #inedibelow.

First, patterns integrate knowledge and its apfitina they ground what would otherwise be
abstract concepts in context. Each pattern incatpsra recurring solution, together with an
explanation of the contexts in which that solutiapplies and an example of the pattern
described in at least one context. Brown, Colliasd Duguid (1989) argue that social and
physical context are beginning to be recognisedritisal to the development of usable, robust
knowledge:

Recent investigations of learning ... challenge teparating of what is
learned from how it is learned and used. The agtini which knowledge is
developed and deployed, it is now argued, is nparsble from or ancillary
to learning and cognition. Nor is it neutral. Rathieis an integral part of
what is learned ... activity and situations are irdégo cognition and
learning ... different ideas of what is appropriagarhing activity produce
very different results. We suggest that by ignorthg situated nature of
cognition, education defeats its own goal of prongd usable, robust
knowledge. And conversely, we argue that approacheds as cognitive
apprenticeship (Collins, Brown & Newman, 1989) tlkeatbed learning in
activity and make deliberate use of the social pimgsical context are more
in line with the understanding of learning and atgn that is emerging
from the research. (p. 32)

Kemp (2005, pp. 44-52) notes that there is increpsind widespread recognition that the
teaching of numeracy in a way that grounds gemaethematical skills in relevant application
contexts is critical to students’ overall mastefy nmmeracy concepts. Lave (1985; 1988)
emphasises this, noting that people who cope easitythe mathematics required in familiar,
practical contexts, often struggle with similar hexhatics when it is not contextualised. Lester
(1989) argues that embedding mathematical problemseaningful context is critical for
motivating and sustaining problem-solving activignd Boaler (1998) points out that at least
one reason that students do not use mathematicdhbdslearned in school when outside of
school is that they do not understand those methetissnough to know how to apply them in
an out-of-school context. In contrast, learning heatatics in an open, project-based
environment appears to improve students’ abilityamply mathematics skills in different
contexts. In a later study, Boaler (2000) furthetes that students reported that:

... they did not even attempt to make use of schemiFled methods in the

real world, not because of the form or structuretloé problems they

encountered ... but because the environments of lHssroom and their

everyday lives were too disparate. The studentgevms that adopting

classroom practices in the real world was inappatgr so they did not

attempt to draw on school mathematics. (p. 114)
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The second reason that patterns are importaneémhtng numeracy is that patterns explicitly
articulate and are defined by key forces that shhpecontextual solution to a problem. Each
description of a pattern includes a list of keycks that make the pattern necessary, and the
solution of a pattern is a structure that balantese forces. Without the awareness that
knowledge of the pattern brings, these forces & mot well understood, even though they
are critical to the development of an effectiveusoh (Coplien, 1996, pp. 9-10, pp. 9-10).

Using mathematics in context means using it inpifesence of constraints or forces that shape
the problems being solved and influence the mathieshased to solve the problem. Zeven-
bergen (1997) argues that mathematics educatiatsriedake account of how people work in
the real world, and points out that experts oftea uinformal methods of calculation based on
observed context and constraints that are at Emstccurate and more efficient than formal
measuring methods. For example, when building & pawrkers construct a frame according to
building regulations without doing any formal measg, but by building the frame and judging
appropriate angles and distance by estimation.d8@ald Greeno (2000) make the case that to
provide students with the best opportunity to $eerelevance of what they are learning to the
real world, mathematics must be taught in a classravhere the culture is one of social
interaction, and realistic constraints, negotiagtemd learning all contribute to problem solving.
In contrast, where mathematics is seen to onlyluevartificial real-world problems, students
are much more likely to struggle to apply their hesihatical learning to the real world.

The third reason why patterns are important to mameeducation is that pattern recognition is
key to problem solving in mathematics. Masilingavidlenko, and Prus-Wisnioska (1996, p.
177) point out that in order to be numerate, sttglared to be able to develop “generalisable
schemas” that can be applied in a variety of cadatek students only understand particular
problem-solving methods in one specific contexgytlre unlikely to be able to transfer their
problem-solving knowledge to other, appropriateterts. Students need tools that help them
make the connection between the “generalisablensghethe contexts in which it can be
applied, and the reasons why it is appropriatepplyaa particular schema in a particular
context. Adey and Shayer (1994, pp. 71-73) distussmportance of “bridging” or “reflection”
to problem solving in mathematics. They developgdaghing methodology consisting of five
central categories, one of which is bridging. Bhigginvolves relating new concepts to other
examples in science, mathematics, or everydaydifd,encourages students to recognise under-
lying similar problem-solving techniques applyingdifferent contexts. The ability to do this
kind of pattern recognition is, according to AdeydaShayer (1994), critical to the ability to
apply learned theoretical knowledge appropriatalyifferent situations, and the ability to do
the pattern recognition is facilitated by expligiirticulating the patterns (1994):

If bridging is the conscious transfer of a reasgrpattern from a context in

which it is first encountered to a new contextntlige transfer is most likely

to be effective if the reasoning pattern has beadarconscious and verbal-

ised. (p. 73)

4. Applying patterns in numeracy education

As numeracy advisors, we have enhanced our teablyimgaking explicit underlying patterns
whose recognition facilitates learning. In Sectbf, we outline such a pattern using the form
described in Section 1. In Section 4.2, we distheselationship between that pattern and the
theory discussed in earlier sections.

4.1. An example pattern

For many students still to develop academic nunyesidls, reading a mathematics problem
does not give them any idea of where to start wheomes to solving that problem. Yet, many
documented problem-solving strategies can help thith task. The following patteriGetting
Started addresses the issue of how to begin the prod¢esdwing a mathematics problem.
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Getting Started

Context: you've read a mathematics problem and feel ovelmbe or confused.
Problem: how to get started working on the mathematicslprab

Forces:

« Reading the maths problem might make you anxiowstressed, making it harder for you
to focus on solving the problem (Rogoff & Lave, 498p. 212-219).

e If you can't see the answer straight away you maggume you will never be able to
solve the problem (Boaler, 1999).

e Focus is by nature local; you will only be ablefdous on one part of a complex problem
at any one time (Raskin, 2000, pp. 9-32).

e A similar approach can be used to solve a collactib mathematical problems of the
same type (Polya, 1962).

e If you are able to see the problem in a familiantest, it may help to motivate your
learning (Lester, 1989).

Solution: Try to express, in everyday language, what thélpro asks for. Once you can do
this, think about how you would find the answemtaat is asked for. Try to express how to find
that answer in “maths language”; in other wordanstate your everyday language answer into
mathematical symbols, as appropriate (Klinger, 200u may find it helps to read the
question from left to right, top to bottom, writirdpwn word-by-word or phrase-by-phrase in
maths language what the words tell you. If you neegou can break sentences down into very
small, manageable fragments. At any point, you iil@yto draw a picture of the problem to
improve your understanding.

Rationale: Many people find it hard to draw out the necesgsargrall information from a
textual description of a mathematics problem. Td@s be for a number of reasons, but key
issues include: being overwhelmed by the problechiarable to find a focus point of “where to
start”; a lack of belief that if a solution pathrnist immediately obvious one can still be worked
out; being unable to recognise the “pattern” of fineblem — that is, recognise what kind of
problem is being presented and therefore what &freblution might be appropriate; and a lack
of understanding as to why solving the problenelisvant or important. This solution addresses
these key issues in a nhumber of ways. By providirsiarting point — what is asked for — the
solution gives the problem solver a place to stamt] having a place to start can help reduce
anxiety. The solution provides a problem-solvingitgigy broken down into small steps, so that
even if the problem solver cannot see how to stiteeproblem immediately, they have a guide
to follow in terms of a process that can lead thiera solution (Paulos, 1988, pp. 87-89). This
can also reduce anxiety and enables the probleversa focus on one thing at a time as they
seek to solve a complex problem.

Examples:

Mathematics Problem 1If the cost of a main course at a restauranstedi as $26.90 but you
know the total cost of the main course will incluagle additional 10% GST, what is that total
cost?

In this problem, what is asked for is the totaltaufsthe food. The question says that the total
cost of the food includes “an additional” 10% GShe words “an additional” tell you that the
total cost includes the $26.90 on the menu plusesioimg more — the 10% GST. So, you could
write:

Total Cost = $26.90 + 10% GST

The next step is to work out the 10% GST. To caleull0% of something, you need to know
that 10% is the same as one-tenth and can be nvaistd/10, or 10/100, or 0.1. You also need to
know that calculating a percentage involves muégtlon; to get 10% of $26.95 you do the

following calculation:



A-108 Communicating patterns of academic numeracy

$26.95x 11—(;1 = $2.69 (Thell—(?C is used because it is corresponds to 10%.)

S0, now you can say:
Total Cost = $26.90 + $2.69 = $29.59
You have obtained what was asked for and solvegribiglem.

Mathematics Problem 2¥ou are asked to bake a cake using 2 cups of,floaup of sugar, and
% a teaspoon of vanilla, along with some otheradgnts. If you want to triple the recipe, how
much vanilla, sugar, and flour will you need?

In this problem, what is asked for is how much itanisugar, and flour you will need if you
triple the recipe. Tripling a recipe means makihge¢ times as much, so each ingredient is
needed in three times the amount that was in flg@at recipe. So, there would be:

2x 3 = 6 cups of flour

1x3 = 3cups of sugar

1 1 .
5 x3= 15 teaspoons of vanilla

You have obtained what is asked for and solvegbtbblem.

Mathematics Problem @0ldham Sixth Form College, 20058 salmon can swim at 12 m/s
with the current and at 8 m/s against it. Find sppeed of the current and the speed of the
salmon in still water. Let represent the speed of the current amdpresent the speed of the
salmon in still water.

In this problem, what is asked for is the speethefcurrent and the speed of the salmon in still
water. Having identified what is asked for, if yate still having trouble seeing how to get a
solution, try reading the problem from left to rigtop to bottom, and translating it into maths
language. The problem starts by saying that “a @aloan swim at 12m/s with the current”. If
the salmon is swimming with the current, then geesl is coming from both the current and the
salmon’s own speed (its speed in still water). t8e, salmon’s speed with the current can be
written as its speed in still water plus the spefethe current, as follows:

s+c=12

(wheresis a symbol for the speed of the salmon in stiltev,c is a symbol for the speed of the
current, and 12 is the speed of the salmon whemivig with the current).

The problem also says that the salmon can swimnafis&gainst the current. When the salmon
IS swimming against the current, its speed is s speed in still water less whatever speed it
loses by fighting against the current. This canviigen in maths language as follows:

s-c=8

(wheresis a symbol for the speed of the salmon in stdtev,c is a symbol for the speed of the
current, and 8 is the speed of the salmon when swighagainst the current).

Once you have these two equations, the problembeasolved easily using simultaneous
equations, but since this pattern focuses on getsitarted, we leave the discussion on
simultaneous equations for another place.

Mathematics Problem @ldham Sixth Form College, 20058)wo crude oil feed streams are
blended to make up a single feed to a distillatolumn. For simplicity we will assume that
while in the distillation column, the crude oil $plit into 3 components: Liquefied Petroleum
Gas (LPG), Light Virgin Naphtha (LVN) and Petrolad¢h crude oil input is composed of a
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different percentage of each product. Using tha @afTable 1, find the percentage of LPG in
each of the two input feed crudes. Hint: you wédkd two equations.

Table 1. Crude oil input values and corresponding outpliesfor LPG, LVN, and petrol, for
two different cases.

Crude Oil Input Total Crude Outputs (n¥hr) Total
(m¥hr) Oil Input Outputs
(m¥hr) (m¥hr)
Stream A | Stream B LPG LVN Petrol
Case 1 100 100 200 25 45 130 200
Case 2 130 150 280 34.5 62.5 183 280

In this problem, what is asked for is the perceatay equivalently the fraction) of LPG in each
of the two (input) feed crudes. Having identifietatv is asked for, if you still cannot see where
to start, you may find that drawing a picture helple problem text says that “two crude oil
feed streams are blended to make up a single teaddistillation column. For simplicity we
will assume that while in the distillation columie crude oil is split into 3 components’....
This could be drawn as detailed in Figure 1.

Crude Oil Input Stream A

Distillation
Crude Oil Input Stream B Column ¥ | yN

Figure 1. Crude oil input to a distillation column from tvdifferent feeds, and output to three
different components.

In Table 1, the problem provides information abting percentages of LPG, LVN, and petrol
that are distilled from two different compositionfscrude oil. The problem asks you to focus on
LPG. In the first case, 100%hr is inputted from both streams A and B and teisults in 25
m*/hr of LPG. Lettinga be the fraction of LPG in stream A ahdhe fraction of LPG in stream
B, this can be written in maths language as follows:

10 + 10 = 25 ni/hr of LPG.

In the second case, 13G/hr is inputted from stream A and 150/hr is inputted from stream
B, resulting in 34.5 Athr of LPG. This can be written in maths languagéoiiows:

13 + 150 = 34.5 ni/hr of LPG.

Once you have these two equations, the problembeasolved easily using simultaneous
equations, but since this pattern focuses on gestiarted, we leave the discussion on simultan-
eous equations for another place.

Resulting Context: The student has a place to start, and a ques$Bynciin answer in everyday
language as a place to start, rather than diviraggbit away into mathematical symbols. The
student has some guidelines to further proceedsaitving the problem, such as translating text
into mathematical symbols.
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4.2. Discussion

In Section 1, we noted that the best patterns energtive, teaching how to build the solution
they propose, rather than just describing it. WiarthatGetting Starteds generative, largely
because it focuses on process, rather than comtbimh Polya (1962, 1965) notes is critical to
teaching students how to think in a way that alldkesm not just to solve the problem at hand,
but to be able to generate solutions to other problby recognising the pattern of a solution.
For example, a student who knows that a good ptastart is “What is being asked for?” is in a
better place to solve new problems than a studaothas rote-learned the content of a solution
for one problem without understanding how that sofuworks or why it is applicable.

Another point we made in Section 1 was that pastprovide “big picture” understanding of the
problems they addresSetting Startecprovides a student with big picture understandmthe
sense that it makes the student more aware of plaeiicular needs with respect to numeracy
skills development. Instead of just thinking, foraeple, “I'm bad at maths”, the student can
realise that they are not necessarily bad at mathisn fact simply need help, say, translating
everyday language to maths language, or with argkepeocess that they can apply when a
solution is not obvious.

In Section 2, we noted that awareness and unddistarof key, underlying patterns can
facilitate learning. We argue th@etting Starteds such a pattern because of its focus on the
learning of problem solving skills and significamesearch evidence, as discussed in Sections 2
and 3, of the importance of problem-solving skilsacademic numeracy.

In Section 3, we highlighted three reasons whyepast are important to academic numeracy:
for integration of knowledge and its applicatioor &rticulation of key forces and context, and
because pattern recognition is key to doing mattiemaThe main way in whiclGetting
Startedintegrates knowledge and its application is thiotlie examples that form part of the
pattern. The pattern’s solution which is first désed in general terms is then illustrated with
several examples from different contexts. The patéxplicitly lists key forces that contribute
to defining the problem, and the “Rationale” settjwrovides discussion of how the solution
addresses those forces. Articulati@gtting Startedn pattern form, with the headings such as
“Context”, “Problem”, and “Solution”, is not esseif but does help to make the underlying
pattern explicit, increasing the student’'s awarsr@ghe pattern and also highlighting import-
ant aspects of the pattern. For example, by exiglineming “Context”, the student is made
aware that the pattern has a context, and is neersally applicable, and is also provided with
information about what the context of the pattegnfacilitating future, effective use of the
pattern in other situations.

5. Conclusions

Patterns have always been used by intuitive mattigianas to solve problems. Explicitly
articulating those patterns allows for them to Beduby less confident mathematicians when
developing problem solving skills. Of particularlwa for those teaching numeracy is that
patterns explicitly incorporate context and coristg into problem solving, as well as
identifying key types of reasoning used repeatadlgolve mathematical problems. Patterns
name and develop explanations, principles and gied@nd explore the contexts to which they
apply. Patterns thus fit well with recent thinkiGi§emp, 2005, pp. 27-95; Schoenfeld, 1992)
that emphasises teaching in context and the dewelop of higher level cognitive skills as
means of improving numeracy skills.
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