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The term “pattern” is widely used in many domains, either colloquially or in 
scientific and technical contexts. Regardless of the domain of discourse, 
however, a pattern articulates fundamental, recurring system structure. As 
such, it embodies essential design knowledge that can be used in building 
and maintaining systems. It provides a solution to a problem that balances 
key forces in a given context. The best patterns are generative, teaching how 
to build the solution they propose, rather than just explaining it. Patterns are 
important to the practice of academic numeracy skills advisers for three 
reasons. First, patterns ground abstract concepts in context to aid problem 
solving, which is often cited as an important graduate skill and is an integral 
part of academic numeracy. Second, consideration of context brings with it 
consideration of constraints or forces that are driven by that context; patterns 
incorporate consideration of forces into problem solving. Third, success in 
learning mathematics invariably involves pattern recognition. Successful 
students recognise that while they may not have seen a given problem 
before, they know what kind of problem it is, and therefore know how to 
solve it, or recognise the pattern of the solution. This paper explores the 
application of a patterns-based approach to teaching academic numeracy 
skills. We provide an overview of patterns, patterns in pedagogy, and issues 
specific to the practice of numeracy education. Finally, we detail a key 
pattern, Getting Started, for use by academic numeracy advisers in teaching 
students problem solving skills, an essential component of academic numer-
acy. We argue that explicitly articulating underlying patterns such as Getting 
Started helps students recognize, grasp, and apply those patterns, as needed, 
thus improving their learning. 

Key Words: pattern, mathematics, numeracy, communication, problem 
solving. 

1. Introduction to patterns 

Although Academic Language and Learning (ALL) advisers are most commonly associated 
with academic literacy, a number also work, either additionally or solely, as numeracy advisers. 
Many advisers have no doubt witnessed the emergence of concordancing for use in English 
language teaching over the last few decades. This so-called “data-driven learning” (Johns & 
King, 1991, p. iii) promotes a pattern-based, and inductive approach to learning grammar rather 
than the traditional deductive one based on grammatical rules and definitions. While pattern-
based approaches such as concordancing are relatively well known among ALL advisers, the 
use of patterns to facilitate learning of academic numeracy has not been as clearly detailed for 
their numeracy colleagues. 
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The term “pattern” is widely used in many domains, either colloquially, or in technical or in 
academic contexts. For example, a pattern might be defined in an artistic context as a “regularly 
repeated arrangement, especially a design made from repeated lines, shapes or colours on a 
surface” (Cambridge University Press, 2003). In the context of understanding the operation of a 
business, a pattern might be “a particular way in which something is done, organised or 
happens” (Cambridge University Press, 2003), or where a physical artefact is being built, “a 
model or original used as an archetype” (Pickett, 2000). In a software system, a pattern could be 
a particular recurring structural relationship between classes or object instances (Coad, 1992). 
Patterns in architecture describe fundamental structural characteristics of buildings and towns 
(Alexander, Ishikawa, & Silverstein, 1977). In a physical system, a pattern is a configuration 
that forms as a result of a transformation that breaks symmetry (Stewart & Golubitsky, 1992).  

While there are some common features across domains, there is no definitive, universal 
definition of the pattern concept, perhaps because patterns do not lend themselves to prescript-
ive definitions; rather, it is consensus about the existence of patterns in a range of existing 
artefacts that validates them (Winn & Calder, 2002). However, we still need to develop our 
understanding of patterns at a theoretical as well as practical level in order to identify and use 
them well. After a detailed study of patterns across many domains, Winn (2006) notes that 
regardless of the particular domain, a pattern provides a solution to a problem that balances key 
forces in a given context. A pattern articulates fundamental, recurring system structure and, as 
such, embodies key design knowledge that can be used in building and maintaining systems. 
The best patterns are generative, teaching how to build the solution they propose, rather than 
just explaining it.  

A pattern is perhaps most frequently described as a solution to a problem in a context (Coplien, 
1996, p. 2; Gamma, Helm, Johnson, & Vlissides, 1993, p. 3; Schmidt, Johnson, & Fayad, 1996). 
Within a given domain, what may appear to be very different problems often turn out to be the 
same basic problem occurring in different contexts. A pattern identifies such a recurring prob-
lem and a solution, describing them in a particular context to help developers understand how to 
create an appropriate solution. Patterns thus capture and explicitly state general problem-solving 
knowledge that is usually implicit and gained only through experience (Buschmann, Meunier, 
Rohnert, Sommerlad, & Stal, 1996): 

When experts work on a particular problem, it is unusual for them to tackle it 
by inventing a new solution that is completely distinct from existing ones. 
They often recall a similar problem they have already solved, and reuse the 
essence of its solution to solve the new problem. This kind of “expert 
behavior”, the thinking in problem-solution pairs, is common to many 
different domains … (p. 2) 

Explicitly stating key design knowledge in a pattern can bring that knowledge to the attention of 
experts who would otherwise be unaware of it. That knowledge can be used to solve what 
appears to be a new problem with a tried-and-true solution, thus improving the design of new 
artefacts. But a pattern is more than just a specification for a solution (Coplien, 1996): 

I could tell you how to make a dress by specifying the route of a scissors 
through a piece of cloth in terms of angles and lengths of cut. Or, I could 
give you a pattern. Reading the specification, you would have no idea what 
was being built or if you had built the right thing when you were finished. 
The pattern foreshadows the product: it is the rule for making the thing, but 
it is also, in many respects, the thing itself. (p. 3) 

A pattern provides some sort of picture of the geometry or shape of the potential artefacts it 
describes. In a domain like architecture, where Alexander (1977) pioneered the use of patterns 
in architectural design, geometry has an obvious physical meaning and describes the shape of 
buildings and other architectural artefacts. Where a mathematics solution is described in terms 
of a pattern, the pattern must provide insight at a big picture level as to how and why the 
solution is effective, providing the person using the pattern with more than a rote-learned 
solution and with the key insight necessary to understanding how to discern when the solution is 
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appropriate and how to apply it in different contexts. In other words, a pattern is both process 
and product; it articulates both the process required to generate an artefact, and the artefact that 
will be generated. A pattern therefore does more than just describe the characteristics of a good 
solution. It also teaches how to create such solutions, and for this reason is often described as 
generative and structural:  

The pattern is, in short, at the same time a thing, which happens in the world, 
and the rule which tells us how to create that thing, and when we must create 
it. It is both a process and a thing; both a description of a thing which is alive 
and a description of the process which will generate that thing. (Alexander, 
1979, p. 247) 
Once we understand buildings in terms of their patterns, we have a way of 
looking at them which makes all buildings, all parts of a town similar … We 
have a way of understanding the generative processes which give rise to 
these patterns. (Alexander, 1979, p. 11) 

Alexander (1979, p. 84) notes, however, that although patterns “… seem like elementary build-
ing blocks, [they] keep varying and are different every time they occur”. Patterns articulate 
recurring structure, but that structure changes according to context. Alexander argues that the 
invariant structure that a pattern articulates has to do with relationship, rather than being embod-
ied in what would traditionally be seen as an entity. It is the structural relationships that remain 
constant across a variety of contexts. For example, while each gothic cathedral has a nave and 
aisles, the particulars of nave and aisle are quite different from one cathedral to another. Neither 
nave nor aisle by itself forms a pattern. The pattern is the structure generated by the invariant 
relationship between nave and aisle in gothic cathedrals: “within a gothic cathedral … the nave 
is flanked on both sides by parallel aisles” (Alexander, 1979, p. 90). 

While a pattern does generate structure, it does more than that; a pattern generates a structure or 
solution that balances key forces. Developing a good solution requires understanding both the 
forces that bring about the problem and how those forces interact. For example, some 
researchers (Nunes, Schliemann, & Carraher, 1993, pp. 147-154) argue that for mathematics 
teaching to be effective, it must take into account forces such as the maths anxiety felt by some 
students. If such forces are ignored and dismissed as irrelevant, the mathematical teaching, even 
if theoretically competent, may be of little use because it is not provided in a way that takes into 
account all the key factors affecting the learning environment. Developing a solution to a 
problem therefore requires balancing possibly conflicting forces in such a way that the solution 
structures developed are stable enough to be effective. The fact that a pattern encompasses prob-
lem, solution and context enables it to articulate the centrality of forces to problem solving, and 
to provide stable solutions to problems (Weiss, 2003): 

The documentation of a pattern goes beyond documenting a problem and its 
solution. It also describes the forces or design constraints that give rise to the 
proposed solution. These are the undocumented and generally misunderstood 
features of a design. Forces can be thought of as pushing or pulling the 
design towards different solutions. A good pattern balances the forces. (p. 
712) 

In domains such as architecture and computer science, which have been at the forefront of 
patterns research, patterns are usually documented according to one of several typical forms. In 
this paper, we use an amalgam of existing forms (Coplien, 1996) including the following 
sections: Name, Problem, Context, Forces, Solution, Rationale, Example, Resulting Context. 
The Name section is not explicitly labelled as such, but is a key word or phrase that describes 
the pattern. Problem describes the problem or difficulty the pattern addresses and Context 
specifies when to apply the pattern, as well as the things that, if changed, would invalidate the 
pattern. A Forces section is important because patterns are not just rules to be followed blindly, 
but involve balancing forces or constraints that define the key trade-offs in the development of a 
solution to a problem. The Solution section addresses the problem stated in the problem section 
and should be detailed enough to be useful but general enough to address a broad context. 
Rationale highlights why the solution is necessary, and Example describes the general concept 
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that is the focus of the pattern in a specific context. Resulting Context wraps up the pattern by 
noting which forces have been resolved and which new problems may arise as a result of this 
pattern. 

The remainder of this paper provides first a theoretical and then a more practical discussion of 
the use of patterns to facilitate the learning of numeracy skills. Section 2 outlines the application 
of patterns to education and Section 3 discusses issues specific to patterns and numeracy. 
Section 4 outlines and analyses a key pattern, Getting Started, for use by academic numeracy 
advisers to facilitate the learning of problem solving skills, an essential component of academic 
numeracy. Section 5 wraps up the paper with conclusions and suggestions for future work. 

2. Patterns in education 

Kuhn (1962, pp. 10-22) describes a paradigm as a thought pattern that defines the set of pract-
ices of a scientific community at a given point in time. He points out that science is not limited 
to the observations, laws, and theories taught in textbooks but that often implicit paradigms 
underlie the way laws and theories have been developed, and understanding of the underlying 
paradigm is critical for the science student. Floyd (1979) applies Kuhn’s insight to the teaching 
of computer science, discussing the teaching of computer programming using programming 
languages such as Pascal and FORTRAN: 

If I ask another professor what he teaches in the introductory programming 
course, whether he answers proudly “Pascal” or diffidently “FORTRAN,” I 
know that he is teaching a grammar, a set of semantic rules, and some 
finished algorithms, leaving the students to discover, on their own, some 
process of design. 
… 
[You should] identify the paradigms [patterns] you use, as fully as you can, 
then teach them explicitly. They will serve your students when Fortran has 
replaced Latin and Sanskrit as the archetypal dead language. (pp. 458-459) 

Floyd’s point is that the same fundamental patterns underlie programming tasks, regardless of 
the particular programming language used. Similarly, common patterns underlie the ability to 
communicate, regardless of the particular spoken language used. Teaching is made much more 
effective when those patterns are explicitly recognised and taught alongside the syntax for a 
particular language. 

Devlin (1998) points out that in recent decades, mathematics has come to be characterised as the 
science of patterns. He highlights a number of entities and processes – from snowflakes to 
wallpaper, from motion and change to the Golden Ratio – and describes how the mathematics 
underlying those phenomena might be described in terms of patterns. Such characterisations of 
mathematics as the science of patterns should not be surprising given Polya’s (1962; 1965) 
seminal work on mathematics and problem solving, and discussion of related patterns. Rather 
than subscribing to a narrow definition of problem solving as being able obtain the correct 
answer to a particular problem or type of problem by applying a standard, learned technique, 
Polya argues that the skill of problem solving is grounded in the ability to be a good guesser and 
apply heuristic strategies to independently solve challenging problems. Problem solving is then 
much more related to guessing, insight, and discovery than it is to formalistic deductive tech-
niques. Based on this point of view, Polya conceptualises mathematics as problem solving, and 
argues that the teaching of mathematics ought to focus on “teaching to think” (1965, p. 100) 
rather than merely imparting information. He thus argues that an exploratory, discovery phase 
ought to precede the teaching of formal concepts, enabling students to experience active rather 
than passive learning. 

Polya (1962) links his approach to solving problems using heuristics to the concept of pattern: 
Solving problems is a practical art, like swimming, or skiing, or playing the 
piano: you can learn it only by imitation and practice.  
… 
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If you wish to derive the most profit from your effort, look out for such 
features of the problem at hand as may be useful in handling the problems to 
come. A solution that you have obtained by your own effort or one that you 
have read or heard, but have followed with real interest and insight, may 
become a pattern for you, a model that you can imitate with advantage in 
solving similar problems. (p. v) 

In the first part of his book, Polya (1962) aims to familiarise learners with useful patterns for 
doing mathematics. He characterises various mathematical problems in terms of patterns, high-
lighting the importance of awareness and understanding of the underlying pattern of a solution 
to the ability to recognise and solve other problems that can be characterised in terms of the 
same underlying pattern. In describing each pattern, Polya first begins with an example, then 
generalises from that example to obtain a pattern, and finally describes the pattern in the context 
of several other examples. 

Schoenfeld (1992) builds on Polya’s and others’ work in his writing on learning to think math-
ematically. He argues that teaching mathematics effectively requires incorporating both epist-
emology and ontology, because it is the cultural framework within which we live and work that 
shapes the kind of approach we take to problem solving. Almost all of western education sits 
within an epistemological framework which defines knowledge as “the sum total of what we 
know” (Schoenfeld, 1992, p. 25). The focus of mathematics education has thus been primarily 
on content, facts, and procedures; mathematics knowledge is understood as content-based rather 
than being a capacity to think independently. Schoenfeld (1992) points out, however, that over 
the past two decades there has been a significant change in the way which mathematics is 
conceptualised: 

… Traditionally one defines what students ought to know in terms of chunks 
of subject matter, and characterizes what a student knows in terms of the 
amount of content that has been “mastered”. As natural and innocuous as 
this view of “knowledge as substance” may seem, it has serious entailments 
… 
Over the past two decades there has been a significant change in the face of 
mathematics … and in the community’s understanding of what it is to know 
and do mathematics … The main thrust of this reconceptualization is to 
think of mathematics, broadly, as “the science of patterns”. (pp. 25-28) 

This change in conceptualisation represents a shift in focus from content to process; from rules 
and procedures to a way of thinking. It represents a growing understanding that mathematics is 
more akin to other scientific disciplines in the need to gather data and test theories using 
heuristics. And it represents a growing understanding that doing mathematics is a social and 
collaborative act. 

3. Patterns and numeracy 

Kemp (2005, pp. 28-36) points out that the term numeracy is defined and used in the literature 
diversely, from referring to a collection of basic mathematical skills through to a much richer 
understanding of mathematics and its application in a variety of contexts. Given the increasing 
emphasis on contextualising mathematics teaching, however, we use the following definition 
(AAMT, 1997) :  

Numeracy involves using mathematics to achieve some purpose in a 
particular context.  
… 
To be numerate is to use mathematics effectively to meet the general 
demands of life at home, in paid work, and for participation in community 
and civic life. In school education, numeracy is a fundamental component of 
learning, performance discourse and critique across all areas of the 
curriculum. It involves the disposition to use, in context, a combination of: 
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underpinning mathematical concepts and skills from across the discipline 
(numerical, spatial, graphical, statistical, and algebraic); mathematical 
thinking and strategies; general thinking skills and a grounded appreciation 
of context. (p. 15) 

Steen (1998) notes that the importance of being numerate is increasing in society as we 
increasingly rely on computers and related data. Kemp (2005, p. 4) emphasises this point, 
highlighting the wide variety of everyday activities requiring basic numeracy, including interp-
reting political polls, understanding the implications of giving medical consent, and under-
standing safety regulations. When it comes to developing numeracy for use in everyday life, 
Kemp (2005, pp. 41-79) argues that the two main factors that contribute to numerate behaviour 
are the way that students learn mathematics and how to apply it to real world situations, and the 
development and use of cognitive skills. We argue that the use of patterns is critical for devel-
oping numeracy because they facilitate the learning of mathematics in appropriate ways and the 
development of appropriate cognitive skills. In particular, we argue that patterns are important 
to academic numeracy for three main reasons, as outlined below.  

First, patterns integrate knowledge and its application; they ground what would otherwise be 
abstract concepts in context. Each pattern incorporates a recurring solution, together with an 
explanation of the contexts in which that solution applies and an example of the pattern 
described in at least one context. Brown, Collins, and Duguid (1989) argue that social and 
physical context are beginning to be recognised as critical to the development of usable, robust 
knowledge: 

Recent investigations of learning … challenge this separating of what is 
learned from how it is learned and used. The activity in which knowledge is 
developed and deployed, it is now argued, is not separable from or ancillary 
to learning and cognition. Nor is it neutral. Rather, it is an integral part of 
what is learned … activity and situations are integral to cognition and 
learning … different ideas of what is appropriate learning activity produce 
very different results. We suggest that by ignoring the situated nature of 
cognition, education defeats its own goal of providing usable, robust 
knowledge. And conversely, we argue that approaches such as cognitive 
apprenticeship (Collins, Brown & Newman, 1989) that embed learning in 
activity and make deliberate use of the social and physical context are more 
in line with the understanding of learning and cognition that is emerging 
from the research. (p. 32) 

Kemp (2005, pp. 44-52) notes that there is increasing and widespread recognition that the 
teaching of numeracy in a way that grounds general mathematical skills in relevant application 
contexts is critical to students’ overall mastery of numeracy concepts. Lave (1985; 1988) 
emphasises this, noting that people who cope easily with the mathematics required in familiar, 
practical contexts, often struggle with similar mathematics when it is not contextualised. Lester 
(1989) argues that embedding mathematical problems in meaningful context is critical for 
motivating and sustaining problem-solving activity, and Boaler (1998) points out that at least 
one reason that students do not use mathematical methods learned in school when outside of 
school is that they do not understand those methods well enough to know how to apply them in 
an out-of-school context. In contrast, learning mathematics in an open, project-based 
environment appears to improve students’ ability to apply mathematics skills in different 
contexts. In a later study, Boaler (2000) further notes that students reported that:  

… they did not even attempt to make use of school-learned methods in the 
real world, not because of the form or structure of the problems they 
encountered … but because the environments of the classroom and their 
everyday lives were too disparate. The students believed that adopting 
classroom practices in the real world was inappropriate, so they did not 
attempt to draw on school mathematics. (p. 114) 
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The second reason that patterns are important for teaching numeracy is that patterns explicitly 
articulate and are defined by key forces that shape the contextual solution to a problem. Each 
description of a pattern includes a list of key forces that make the pattern necessary, and the 
solution of a pattern is a structure that balances those forces. Without the awareness that 
knowledge of the pattern brings, these forces are often not well understood, even though they 
are critical to the development of an effective solution (Coplien, 1996, pp. 9-10, pp. 9-10).  

Using mathematics in context means using it in the presence of constraints or forces that shape 
the problems being solved and influence the mathematics used to solve the problem. Zeven-
bergen (1997) argues that mathematics education needs to take account of how people work in 
the real world, and points out that experts often use informal methods of calculation based on 
observed context and constraints that are at least as accurate and more efficient than formal 
measuring methods. For example, when building a pool, workers construct a frame according to 
building regulations without doing any formal measuring, but by building the frame and judging 
appropriate angles and distance by estimation. Boaler and Greeno (2000) make the case that to 
provide students with the best opportunity to see the relevance of what they are learning to the 
real world, mathematics must be taught in a classroom where the culture is one of social 
interaction, and realistic constraints, negotiation, and learning all contribute to problem solving. 
In contrast, where mathematics is seen to only involve artificial real-world problems, students 
are much more likely to struggle to apply their mathematical learning to the real world. 

The third reason why patterns are important to numeracy education is that pattern recognition is 
key to problem solving in mathematics. Masilinga, Davidenko, and Prus-Wisnioska (1996, p. 
177) point out that in order to be numerate, students need to be able to develop “generalisable 
schemas” that can be applied in a variety of contexts. If students only understand particular 
problem-solving methods in one specific context, they are unlikely to be able to transfer their 
problem-solving knowledge to other, appropriate contexts. Students need tools that help them 
make the connection between the “generalisable schema”, the contexts in which it can be 
applied, and the reasons why it is appropriate to apply a particular schema in a particular 
context. Adey and Shayer (1994, pp. 71-73) discuss the importance of “bridging” or “reflection” 
to problem solving in mathematics. They developed a teaching methodology consisting of five 
central categories, one of which is bridging. Bridging involves relating new concepts to other 
examples in science, mathematics, or everyday life, and encourages students to recognise under-
lying similar problem-solving techniques applying in different contexts. The ability to do this 
kind of pattern recognition is, according to Adey and Shayer (1994), critical to the ability to 
apply learned theoretical knowledge appropriately in different situations, and the ability to do 
the pattern recognition is facilitated by explicitly articulating the patterns (1994): 

If bridging is the conscious transfer of a reasoning pattern from a context in 
which it is first encountered to a new context, then the transfer is most likely 
to be effective if the reasoning pattern has been made conscious and verbal-
ised. (p. 73) 

4. Applying patterns in numeracy education 

As numeracy advisors, we have enhanced our teaching by making explicit underlying patterns 
whose recognition facilitates learning. In Section 4.1, we outline such a pattern using the form 
described in Section 1. In Section 4.2, we discuss the relationship between that pattern and the 
theory discussed in earlier sections.  

4.1. An example pattern 

For many students still to develop academic numeracy skills, reading a mathematics problem 
does not give them any idea of where to start when it comes to solving that problem. Yet, many 
documented problem-solving strategies can help with this task. The following pattern, Getting 
Started, addresses the issue of how to begin the process of solving a mathematics problem. 
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Getting Started 

Context: you’ve read a mathematics problem and feel overwhelmed or confused. 

Problem: how to get started working on the mathematics problem. 

Forces: 
• Reading the maths problem might make you anxious or stressed, making it harder for you 

to focus on solving the problem (Rogoff & Lave, 1984, pp. 212-219). 
• If you can’t see the answer straight away you might assume you will never be able to 

solve the problem (Boaler, 1999). 
• Focus is by nature local; you will only be able to focus on one part of a complex problem 

at any one time (Raskin, 2000, pp. 9-32). 
• A similar approach can be used to solve a collection of mathematical problems of the 

same type (Polya, 1962). 
• If you are able to see the problem in a familiar context, it may help to motivate your 

learning (Lester, 1989). 

Solution: Try to express, in everyday language, what the problem asks for. Once you can do 
this, think about how you would find the answer to what is asked for. Try to express how to find 
that answer in “maths language”; in other words, translate your everyday language answer into 
mathematical symbols, as appropriate (Klinger, 2006). You may find it helps to read the 
question from left to right, top to bottom, writing down word-by-word or phrase-by-phrase in 
maths language what the words tell you. If you need to, you can break sentences down into very 
small, manageable fragments. At any point, you may like to draw a picture of the problem to 
improve your understanding. 

Rationale: Many people find it hard to draw out the necessary overall information from a 
textual description of a mathematics problem. This can be for a number of reasons, but key 
issues include: being overwhelmed by the problem and unable to find a focus point of “where to 
start”; a lack of belief that if a solution path is not immediately obvious one can still be worked 
out; being unable to recognise the “pattern” of the problem – that is, recognise what kind of 
problem is being presented and therefore what kind of solution might be appropriate; and a lack 
of understanding as to why solving the problem is relevant or important. This solution addresses 
these key issues in a number of ways. By providing a starting point – what is asked for – the 
solution gives the problem solver a place to start, and having a place to start can help reduce 
anxiety. The solution provides a problem-solving strategy broken down into small steps, so that 
even if the problem solver cannot see how to solve the problem immediately, they have a guide 
to follow in terms of a process that can lead them to a solution (Paulos, 1988, pp. 87-89). This 
can also reduce anxiety and enables the problem solver to focus on one thing at a time as they 
seek to solve a complex problem. 

Examples:  
Mathematics Problem 1: If the cost of a main course at a restaurant is listed as $26.90 but you 
know the total cost of the main course will include an additional 10% GST, what is that total 
cost?  

In this problem, what is asked for is the total cost of the food. The question says that the total 
cost of the food includes “an additional” 10% GST. The words “an additional” tell you that the 
total cost includes the $26.90 on the menu plus something more – the 10% GST. So, you could 
write: 

 Total Cost = $26.90 + 10% GST 

The next step is to work out the 10% GST. To calculate 10% of something, you need to know 
that 10% is the same as one-tenth and can be written as 1/10, or 10/100, or 0.1. You also need to 
know that calculating a percentage involves multiplication; to get 10% of $26.95 you do the 
following calculation: 
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 $26.95 × 
100

10
 = $2.69 (The 

100

10
 is used because it is corresponds to 10%.) 

So, now you can say: 

 Total Cost = $26.90 + $2.69 = $29.59 

You have obtained what was asked for and solved the problem. 

Mathematics Problem 2: You are asked to bake a cake using 2 cups of flour, 1 cup of sugar, and 
½ a teaspoon of vanilla, along with some other ingredients. If you want to triple the recipe, how 
much vanilla, sugar, and flour will you need? 

In this problem, what is asked for is how much vanilla, sugar, and flour you will need if you 
triple the recipe. Tripling a recipe means making three times as much, so each ingredient is 
needed in three times the amount that was in the original recipe. So, there would be: 

 2 × 3  =  6 cups of flour 

 1 × 3  =  3 cups of sugar 

 
2

1 × 3 =  
2

1
1 teaspoons of vanilla 

You have obtained what is asked for and solved the problem. 

Mathematics Problem 3 (Oldham Sixth Form College, 2005a): A salmon can swim at 12 m/s 
with the current and at 8 m/s against it. Find the speed of the current and the speed of the 
salmon in still water. Let c represent the speed of the current and s represent the speed of the 
salmon in still water. 

In this problem, what is asked for is the speed of the current and the speed of the salmon in still 
water. Having identified what is asked for, if you are still having trouble seeing how to get a 
solution, try reading the problem from left to right, top to bottom, and translating it into maths 
language. The problem starts by saying that “a salmon can swim at 12m/s with the current”. If 
the salmon is swimming with the current, then its speed is coming from both the current and the 
salmon’s own speed (its speed in still water). So, the salmon’s speed with the current can be 
written as its speed in still water plus the speed of the current, as follows: 

 s + c = 12  

(where s is a symbol for the speed of the salmon in still water, c is a symbol for the speed of the 
current, and 12 is the speed of the salmon when swimming with the current). 

The problem also says that the salmon can swim at 8 m/s against the current. When the salmon 
is swimming against the current, its speed is its own speed in still water less whatever speed it 
loses by fighting against the current. This can be written in maths language as follows: 

 s - c = 8 

(where s is a symbol for the speed of the salmon in still water, c is a symbol for the speed of the 
current, and 8 is the speed of the salmon when swimming against the current). 

Once you have these two equations, the problem can be solved easily using simultaneous 
equations, but since this pattern focuses on getting started, we leave the discussion on 
simultaneous equations for another place. 

Mathematics Problem 4 (Oldham Sixth Form College, 2005b): Two crude oil feed streams are 
blended to make up a single feed to a distillation column. For simplicity we will assume that 
while in the distillation column, the crude oil is split into 3 components: Liquefied Petroleum 
Gas (LPG), Light Virgin Naphtha (LVN) and Petrol. Each crude oil input is composed of a 
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different percentage of each product. Using the data in Table 1, find the percentage of LPG in 
each of the two input feed crudes. Hint: you will need two equations.  

Table 1. Crude oil input values and corresponding output values for LPG, LVN, and petrol, for 
two different cases. 

 Crude Oil Input 

(m3/hr) 

Total Crude 
Oil Input 

(m3/hr) 

Outputs (m3/hr) Total 
Outputs 

(m3/hr) 

  Stream A  Stream B    LPG  LVN  Petrol    

Case 1  100  100  200  25  45  130  200  

Case 2  130  150  280  34.5  62.5  183  280  

In this problem, what is asked for is the percentage (or equivalently the fraction) of LPG in each 
of the two (input) feed crudes. Having identified what is asked for, if you still cannot see where 
to start, you may find that drawing a picture helps. The problem text says that “two crude oil 
feed streams are blended to make up a single feed to a distillation column. For simplicity we 
will assume that while in the distillation column, the crude oil is split into 3 components …”. 
This could be drawn as detailed in Figure 1. 

 
Figure 1. Crude oil input to a distillation column from two different feeds, and output to three 
different components. 

In Table 1, the problem provides information about the percentages of LPG, LVN, and petrol 
that are distilled from two different compositions of crude oil. The problem asks you to focus on 
LPG. In the first case, 100 m3/hr is inputted from both streams A and B and this results in 25 
m3/hr of LPG. Letting a be the fraction of LPG in stream A and b the fraction of LPG in stream 
B, this can be written in maths language as follows: 

 100a + 100b = 25 m3/hr of LPG. 

In the second case, 130 m3/hr is inputted from stream A and 150 m3/hr is inputted from stream 
B, resulting in 34.5 m3/hr of LPG. This can be written in maths language as follows: 

 130a + 150b = 34.5 m3/hr of LPG. 

Once you have these two equations, the problem can be solved easily using simultaneous 
equations, but since this pattern focuses on getting started, we leave the discussion on simultan-
eous equations for another place. 

Resulting Context: The student has a place to start, and a question they can answer in everyday 
language as a place to start, rather than diving straight away into mathematical symbols. The 
student has some guidelines to further proceed with solving the problem, such as translating text 
into mathematical symbols.  

Crude Oil Input Stream A 

Crude Oil Input Stream B 
Distillation 

Column 

LPG 

LVN 

Petrol 
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4.2. Discussion 

In Section 1, we noted that the best patterns are generative, teaching how to build the solution 
they propose, rather than just describing it. We argue that Getting Started is generative, largely 
because it focuses on process, rather than content, which Polya (1962, 1965) notes is critical to 
teaching students how to think in a way that allows them not just to solve the problem at hand, 
but to be able to generate solutions to other problems by recognising the pattern of a solution. 
For example, a student who knows that a good place to start is “What is being asked for?” is in a 
better place to solve new problems than a student who has rote-learned the content of a solution 
for one problem without understanding how that solution works or why it is applicable. 

Another point we made in Section 1 was that patterns provide “big picture” understanding of the 
problems they address. Getting Started provides a student with big picture understanding in the 
sense that it makes the student more aware of their particular needs with respect to numeracy 
skills development. Instead of just thinking, for example, “I’m bad at maths”, the student can 
realise that they are not necessarily bad at maths, but in fact simply need help, say, translating 
everyday language to maths language, or with a general process that they can apply when a 
solution is not obvious. 

In Section 2, we noted that awareness and understanding of key, underlying patterns can 
facilitate learning. We argue that Getting Started is such a pattern because of its focus on the 
learning of problem solving skills and significant research evidence, as discussed in Sections 2 
and 3, of the importance of problem-solving skills for academic numeracy. 

In Section 3, we highlighted three reasons why patterns are important to academic numeracy: 
for integration of knowledge and its application, for articulation of key forces and context, and  
because pattern recognition is key to doing mathematics. The main way in which Getting 
Started integrates knowledge and its application is through the examples that form part of the 
pattern. The pattern’s solution which is first described in general terms is then illustrated with 
several examples from different contexts. The pattern explicitly lists key forces that contribute 
to defining the problem, and the “Rationale” section provides discussion of how the solution 
addresses those forces. Articulating Getting Started in pattern form, with the headings such as 
“Context”, “Problem”, and “Solution”, is not essential, but does help to make the underlying 
pattern explicit, increasing the student’s awareness of the pattern and also highlighting import-
ant aspects of the pattern. For example, by explicitly naming “Context”, the student is made 
aware that the pattern has a context, and is not universally applicable, and is also provided with 
information about what the context of the pattern is, facilitating future, effective use of the 
pattern in other situations.  

5. Conclusions 

Patterns have always been used by intuitive mathematicians to solve problems. Explicitly 
articulating those patterns allows for them to be used by less confident mathematicians when 
developing problem solving skills. Of particular value for those teaching numeracy is that 
patterns explicitly incorporate context and constraints into problem solving, as well as 
identifying key types of reasoning used repeatedly to solve mathematical problems. Patterns 
name and develop explanations, principles and analogies and explore the contexts to which they 
apply. Patterns thus fit well with recent thinking (Kemp, 2005, pp. 27-95; Schoenfeld, 1992) 
that emphasises teaching in context and the development of higher level cognitive skills as 
means of improving numeracy skills.  
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